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MEMORANDUM. 

SUBJECT: 

FROM: 

Documentation of DQO Process Outputs and Proposals for Quality Control of Pb 
data from S LAMS Sites Q•A••••//)•• 
Michael Papp (EPA, OAQPS, AQAD, A 

TO.." Pb Monitoring Rule Docket (EPA-HQ-OAR-2006-0735) 

This memo presents summary findings from an analysis that assessed the significance of data 
completeness, sampling frequency, precision and bias on the Pb design value averaging times and 
identifies the measurement quality objectives for the data quality indicators of precision and bias. 

Executive Summary 

The EPA is in the process of revising the lead (Pb) National Ambient Air Quality Standards (NAAQS). 
As part of the process, the monitoring requirements for Pb are being reviewed and include monitoring 
options like a: 

• Change in averaging time of the indicator from the fixed quarterly average to either a rolling 
quarterly or monthly average; and a 

• Change in. monitoring device from the current Federal Reference Method (FRM), th e high- 
volume TSP. sampler, to the low-volume PM10 sampler. 

Using the DQO Process, EPA explored how changes in design value averaging times, sampling 
frequency, data completeness, precision and bias affect ones ability to compare Pb. estimates to a NAAQS 
value. RTI, in coordination with Neptune and Company, worked with EPA to create a Pb data set which 
could then be used to evaluate various data quality scenarios based on the two design value averaging 
times (monthly and rolling quarterly). The scenarios included: 

• 
Two completeness scenarios (75% and 90%) 

• 
Three sampling frequencies (every day, every three days, every six days) 

• 
Three precision scenarios (10%, 20% and 30%) 

• 
Six bias scenarios (+ 5%, + 10%, + 15%) 

The evaluation used over 130 Pb ambient air routine liaonitoring locations. We initially reviewed the data 
to determine whether we needed to perform DQO assessments of source and non-source oriented sites 
separately. The data assessment revealed that although concentrations were different, temporal variability 
of the two site types were similar and one model representing the temporal variability at a monitoring site 
could be developed. The next step was to select a model to represent a hypothetical monitoring site with 
a certain amount of variability. We selected six routine monitoring sites that had greater than average 
temporal variability (in the 80-90 percentile range of the d•ta set) to construct this model. Because 
temporal variability and mean Pb level are related, these sites also had mean Pb levels higher than the 
average of all the data. The selection of a model with more than average variability even compared to 
sites with similar mean values, but within the universe of real data currently being reported, is consistent 
with the approach used several years earlier to generate ozone and PM2.5 DQO's. A detailed report of this 
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Pb data selection/modeling activity is provided in Attachment A.   Tables 1 and 2 provide the descriptive 
statistics of the population model and Figures 1 and 2 provide graphic representations of the data. 
 
Table 1.  Average Monthly Design Value Statistics for the Hypothetical Monitoring Site (µg/m3). 
(Daily Sampling, 100% Completeness, No Decrease in Precision or Increase in Bias) 

N Min. Q(.025) Q(.25) Med. Mean Q(.75) Q(.975) Max. SE 
2500 0.0563 0.0563 0.0890 0.1119 0.1221 0.1385  0.2329 0.2810 0.0487 

 
Table 2.  Average Rolling Quarterly Design Value Statistics for the Hypothetical Monitoring Site (µg/m3). 
(Daily Sampling, 100% Completeness, No Decrease in Precision or Increase in Bias) 

N Min. Q(.025) Q(.25) Med. Mean Q(.75) Q(.975) Max. SE 
2500 0.0776 0.0776 0.0997 0.1163 0.1221 0.1375 0.1843 0.1937 0.0297 

 
 
Once the model is constructed, we use 
it as a tool to evaluate the effect each 
scenario has on the uncertainty around 
either the monthly or rolling quarterly 
estimate of average Pb concentration. 
The metric used to measure this 
significance was the difference 
between the upper and lower 95% 
confidence limits (CL) for the 
variability about the mean (0.122 
µg/m3 ) of the hypothetical monitoring 
site.  
 
In order to provide a way to illustrate 
all the scenarios evaluated, Figure 3 
was developed in a manner that two 
lines (top two lines) would represent 
data for the monthly average at data 
completeness of 75% and 90% , and 
two lines (bottom two lines) would 
represent data for the quarterly 
average at the same data completeness 
of 75% and 90%.  Each point along 
the lines represents a scenario of 
sampling frequency, imprecision and 
bias and represents the difference 
(width) of the upper and lower 95% 
CLs of the data where the true 
(hypothetical) mean is 0.122 µg/m3.  
Each scenario was simulated 2,500 
times.   
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As an example, lets take  the scenario of the quarterly estimate with 90% completeness with everyday 
sampling at 10% precision and + 5% bias. This scenario is represented by the second point on yellow line 
in Figure 3.   The model predicted an: 
 

• upper CL  of 0.1976 µg/m3 and a lower CL of  0.0797 µg/m3 for a positive 5% bias, (width 
0.1179 µg/m3) and,  

• an upper CL  of 0.1787 µg/m3 and a lower CL of  0.0723 µg/m3 for a negative 5% bias (width 
0.1064 µg/m3) 

• the average of the two CL widths (0.1179 + 0.1064 /2) is 0.1121 µg/m3 
 
Using an average width negates the affect of bias in this figure, but it does provide a better estimate of the 
width of the CLs for any scenario and provides a general assessment of magnitude of different variability 
scenarios. The effect of bias is shown later in this summary (see Fig. 4). 
 
NOTE:  the width of quarterly 95% CL with 0% precision and 0% bias (90% completeness) is  
0.1115 µg/m3 which is represented as the first point on the yellow line (as well as the first point of each 
line). The width is very close to the data points with increasing amounts of imprecision and bias which 
indicate that the majority of the variability is natural (day-to-day) temporal variability (see Fig. 2). 
 
Observations 
 
Figure 4 provides another way to illustrate the affects of the various data quality scenarios.   Each box and 
whisker plot represents the distribution (both positive and negative bias) all the data quality scenarios 
associated with one particular variable.  For example the first chart in Figure 4 represents the monthly and 
quarterly averaging times.  The box and whisker represent the differing widths of the CL as one changes 
sampling frequency, completeness, precision and bias.  Since all the  scenarios are applied in the same 
manner for any one variable (e.g. averaging time) one can determine which variables have the most 
impact on uncertainty. 
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• All independent 
variables- design value 
averaging time, 
sampling frequency, 
completeness, precision 
and bias- have a 
statistically significant 
impact on the width of 
the confidence interval 
for the mean (p-value < 
0.0000).   

• The design value 
averaging time and 
sampling frequency 
have the greatest 
impact on the width but 
the two variables 
interact.  That is the 
decrease in the mean 
width with the increase 
in sampling frequency 
is greater for the 
monthly averaging 
design value than the 
rolling quarterly 
average. 

• The change in design 
value averaging time 
also interacts with the 
change in bias. The 
decrease in the mean 
width with the decrease 

in bias is greater for the monthly averaging design value than the rolling quarterly average. 
• The change in data completeness has less impact on mean width than the change in design value 

averaging time, sampling frequency and bias  
• The change in precision has the least influence on mean width 

 
Proposed Measurement Quality Objectives for Precision and Bias Data 
Quality Indicators  
 
Precision -- 
 
Data quality indicators are quantitative statistics and qualitative descriptors that are used to interpret the 
degree of acceptability or utility of data to the user.  The principle data quality indicators are precision, 
bias, completeness, comparability, representativeness and detectability. A measurement quality objective 
is a goal set by EPA guidance that represents a reasonable expectation of what one should be able to 
achieve for a specific data quality indicator in order to maintain acceptable levels of uncertainty. EPA 
reviewed precision data from various sources including routine Pb data from the SLAMS, National Air 
Toxics Trends Sites and Chemical Speciation Network Sites; this Pb data was collected by various 
sampling and analytical methods.  Table 3 provides a comparison of this data.  The data represent eight 
precision assessments due to use of either a different sampling method or a different analysis method. As 
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with our other particulate-based criteria pollutants, EPA identifies a “cutoff” concentration value and 
precision estimates are made only using pairs of precision values that are equal to or above this cutoff 
value.  At low concentrations, agreement between measurements of collocated values, expressed as 
relative percent difference, is understandably poor but at such low concentrations precision is not an 
important objective for air quality purposes. Prior to the new Pb NAAQS standard, the collocated 
precision cutoff value was 0.15 µg/m3. With the lowering of the NAAQS, and improvements in sampling 
and analytical technologies, EPA feels this cutoff value can and should be lowered.  The data in Table 3 
was reviewed at a number of potential cutoff values; starting at 0.002 µg/m3, which is the proposed 
method detection limit (MDL) for the XRF-based FRM for Pb-PM10, and up to 0.02 µg/m3 .  Some 
scenarios in Table 3 do not show the 0.01 or 0.02 µg/m3 scenarios because there were not enough (or no) 
routine data concentrations in these ranges. Based on our evaluation, we believe that 0.02 µg/m3 is an 
appropriate cutoff value for two reasons: 1) there has been an established concept of a “limit of 
quantitation” that is usually estimated at ten times the MDL,  and 2) it is potentially one order of 
magnitude away from the NAAQS (if the NAAQS is set at 0.2 µg/m3) and provides an adequate margin 
of safety for data review.  As an alternative, EPA could consider 0.01 µg/m3 as a cutoff but we do not 
recommend going below this concentration.  Based on this cutoff value and reviewing the historical data 
in Table 1 at or above the 0.02 µg/m3 cutoff value, EPA proposes a precision measurement quality 
objective of 20% for a 90% confidence limit coefficient of variation, aggregated over a 3-year period at 
the primary quality assurance organization level.  This means that the large majority of paired precision 
data should show a difference below 20%; monitoring organizations that do not achieve this result would 
be advised of the problem and encouraged to investigate and resolve the causes of the disagreements. 
 
Bias-- 
 
Estimates of Pb bias were evaluated by  reviewing data collected through the PM2.5 Chemical Speciation 
Network (CSN) and the National Air Toxics Trends Stations (NATTS) QA programs. Data was evaluated 
using the DASC Tool which calculates bias by current 40 CFR  Appendix A methods.  As with precision, 
cutoff values are also used for bias data.  For the reasons provided in the precision section a cutoff value 
of  0.02 µg/m3

  is proposed. 
 
CSN Data – 

 
The XRF bias estimates for the PM2.5 CSN 
were obtained from data provided by the 
analysis of Performance Evaluation (PE) 
samples. Multiple laboratories provide XRF 
analyses in support of the CSN (Research 
Triangle Institute, California Air Resources 
Board, Oregon DEQ, Desert Research 
Institute). CSN PE samples consist of “real-
world” particle filters collected over 
multiple days to ensure that an adequate 
amount of material is present for analysis. 
For XRF, 46.2-mm Teflon filters were 
collected and analyzed by an EPA reference 
lab prior to distribution. Figure 5 provides 
the individual percent difference results for 
44 observations by the three laboratories. 

The average concentration in µg/filter was 0.331 µg/filter and the equivalent concentration in µg/m3, 
based on 24 m3 (16.7 Lpm sampling), was 0.0138 µg/m3. The overall absolute bias upper bound for the 
95% percentile is 23.42%. 

Avg. Conc. 0.331 µg/filter
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NATTS Data — 
 

Bias estimates for the NATTS were obtained 
from data provided by the analysis of 
Performance Evaluation (PE) samples by 
ICP-MS. Several laboratories provide ICP-
MS analyses in support of the NATTS. 
NATTS PE samples consisted mostly of 
46.2-mm quartz fiber filters that are 
produced by the aerosolization and 
deposition of a Pb-salt solution onto each 
filter. The size distribution of the liquid 
aerosol was not controlled or characterized. 
Initially Teflon filters were used and then 
switched to quartz filters to match the filter 
material used by the NATTS. The filters 
were prepared and analyzed by ICP-MS at a 
reference lab prior to distribution. Figure 6 

provides the individual percent difference results for 175 observations. The average concentration in 
µg/filter was 2.965 µg/filter and the equivalent concentration in µg/m3, based on 24 m3 (16.7 Lpm 
sampling) was 0.1236 µg/m3.  The overall absolute bias upper bound for the 95% percentile is 16.81%. 
 
It is important to note the differences in the PE samples generated for each program as these differences 
have the potential to affect the bias estimates. The XRF bias estimate is based on PM2.5 particles collected 
in the field and include any associated particle or sample “matrix” effects.  For NATTS, the ICP-MS PEs 
samples are lab-generated liquid aerosols. In addition, the XRF PE samples are at a concentration level 
that is one order of magnitude lower than the ICP-MS PE samples (0.331 versus 2.965 µg/filter) and at an 
equivalent concentration (0.0138 µg/m3).  It should be observed that this equivalent concentration is 
below the proposed cut off value.  Therefore, one might expect for XRF bias results to comparable to the 
NATTS bias results if values above the proposed cutoff are used.  
 
Based on this cutoff value and reviewing the CSN and NATTS data, EPA is proposing an overall absolute 
bias upper bound goal of 15%. The XRF bias estimate of 23.4% is expected to improve at concentrations 
10 times higher than those evaluated.  The ICP-MS bias estimate of 16.81% is in line with the proposed 
goal.  This means that the large majority of bias data should show difference below 15%; monitoring 
organizations that do not achieve this result would be advised of the problem and encouraged to 
investigate and resolve the causes of the disagreements. 
 
Summary 
 
The report provides a summary of the influences of uncertainty around design value averaging times, 
sampling frequency, completeness, precision and bias. As is normally the case with environmental data, 
natural spatial and temporal variability represent the largest amount of uncertainty. Measurement 
uncertainty is then influenced, in order of largest to smallest effect, by averaging time, sampling 
frequency, bias, completeness and precision. Based on a review of precision and bias data from various 
sources, AAMG suggests that measurement quality objectives (MQOs) for precision be initially 
established at 20% and bias at +15%. This precision and bias combination for each completeness and 
sampling frequency scenario is represented by the red circles in Fig 3.   For completeness, it appears 75% 
could be considered acceptable.  Most data reviews show routine data completeness higher than 75% and 
EPA could provide stronger guidance (extra samplers available for key sites or collocated precision at key 
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sites for data substitution) to ensure higher data completeness.   AAMG is not in a position to make 
decisions on design value averaging times or sampling frequency but quarterly design value averaging 
times and higher sampling frequency significantly reduce data uncertainty.  It is possible that sampling 
frequency be increased (through regulation) as data approach the NAAQS values thereby reducing data 
uncertainty as much a practicable. 
 
Table 3.  Precision Summary 
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The Environmental Protection Agency (EPA) is in the process of revising the lead (Pb) National 
Ambient Air Quality Standards (NAAQS).  As part of the process, the monitoring requirements 
for Pb are being reviewed.  Monitoring options that are being reviewed include a: 
 

• Change in averaging time of the indicator from the current quarterly average to a 
monthly average or rolling quarterly average; and a 

• Change in monitoring device from the current Federal Reference Method (FRM), the 
high-volume TSP sampler, to the low-volume PM10 sampler. 

 
This report provides the information needed to evaluate the consequences of a change in the 
averaging time and will not address the evaluation of the monitoring devices.   
 
Monitoring Requirements:  Change in Averaging Time 
The following tasks were completed in order to explore how changes in averaging times, 
sampling frequency, data completeness, precision and bias effect data uncertainty:  

• Selection of an Air Quality Standard (AQS) Pb data set with a measurement duration of 
24 hours; 

• From the above data set, selection of two data sets representing the hypothetical location 
types, source oriented and nonsource oriented; 

• Evaluation of the hypothetical source and nonsource data sets, to determine whether 
separate tables of performance metrics should be constructed for each location type; 

• Construction of a model to estimate performance metrics under the various combinations 
of sampling frequency, completeness, decrease in precision, and increase in bias; 

• Calculation of the metrics to evaluate model performance under the various combinations 
of sampling frequency, completeness, and increase in the random (precision) and non-
random (bias) components of measurement error, in order to compare design values. 

 
 
Selection of an Air Quality Data Set  
EPA provided an initial Pb-TSP data set containing 130 locations with measurements from the 
six years, 2001 to 2006.  Descriptive statistics, time series plots and distribution plots were 
constructed for each of the 130 locations.  This initial data analysis revealed many locations had 
few measurements (less than 75% completeness for a 1 in 6 sampling frequency) within a 
calendar year.  In order to assure the data would capture seasonal trends, EPA made the decision 
to include only those locations that had at least 40 measurements (75% completeness for a 1 in 6 
sampling frequency) for at least one calendar year.  With the exception of measurements below 
the minimum detection limit, qualified measurements were dealt with on a measurement-by- 
measurement basis.  All measurements identified as below the minimum detection limit (MDL) 
were used as recorded, in AQS, typically either a zero or one-half the MDL.  Specific details on 
the construction the final data set are provided in Appendix A.  The final data set used to select 
the hypothetical source and nonsource locations consisted of 41 source locations with 12,291 
observations and 65 nonsource locations with 18,230 observations.     
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Construction of Hypothetical Source and Nonsource Locations 
A hypothetical source location data set was constructed for use in model construction and design 
value comparisons.  The goal was to construct a location based on the metric of Pb variability, 
where the within location variability (temporal variability) was greater than the average. The 
approach is similar to the one used to develop both the PM2.5 DQO and ozone DQOs.  To 
achieve this goal, the standard deviation for each of the 41 source locations was calculated using 
all the available data for each location.  The descriptive statistics for the 41 source locations are 
provided in Appendix B, where the locations are sorted by standard deviation.  The five source 
locations (480850007, 471870104, 171190010, 080010005, and 290930030) with standard 
deviations in the 80th to 90th percentile were selected to represent a hypothetical source location.  
These 1,730 observations were combined into a single data set used to represent a hypothetical 
source location.  A plot of the source location means versus standard deviations is provided in 
Figure 1, where the data pairs with standard deviations in the 80th to 90th percentile are 
highlighted.  The descriptive statistics for the hypothetical source population are provided in 
Table 1. 
 
 

Figure 1.  Source Location Means versus Standard Deviations (µg/m3).  
The five locations with standard deviations in the 80th to 90th percentile are filled circles, 

 an intercept = 0 / slope = 1 line is provided for reference. 
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Table 1.  Descriptive Statistics for the Hypothetical Source Location (µg/m3). 
N Min. Q(.25) Med. Mean Q(.75) Max. SD #0s %0s 

1730 0.0000 0.0100 0.0445 0.1214 0.1332 5.1590 0.2678 177 10.23 
 

 
The hypothetical nonsource location was constructed in the same manner.  The description 
statistics for the 65 nonsource locations are provided in Appendix B, where the locations are 
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sorted by standard deviation.  There were a total of seven source locations with standard 
deviations in the 80th to 90th percentile (060719004, 060371103, 170313301, 171193007, 
060375001, 171630010, and 060371301).  These 2,325 observations were combined into a single 
data set used to represent a hypothetical nonsource location.  A plot of the nonsource location 
means versus standard deviations is provided in Figure 2, where the data pairs with standard 
deviations in the 80th to 90th percentile are highlighted.  The descriptive statistics for the 
hypothetical nonsource population are provided in Table 2. 

 
Figure 2.  Nonsource Location Means versus Standard Deviations (µg/m3).  

The seven locations with standard deviations in the 80th to 90th percentile are filled circles, 
an intercept = 0 / slope = 1 line is provided for reference. 
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Table 2.  Descriptive Statistics for the Hypothetical Nonsource Location (µg/m3). 
N Min. Q(.25) Med. Mean Q(.75) Max. SD #0s %0s 

2325 0.0000 0.0100 0.0200 0.02619 0.0300 0.9600 0.0429 106 4.56 
 

Time series and distribution plots for the hypothetical source and nonsource locations are 
provided in Appendix C.  
 
 
Hypothetical Source versus Nonsource Locations - One Model or Two? 
The decision whether or not to construct a separate model for source and nonsource locations 
was made by looking at the relationship between the means and standard deviations for the 
locations selected to construct the two types of hypothetical locations.  A separate simple linear 
regression model was fit to the standard deviation/mean pairs for the locations selected to 
construct the hypothetical source and nonsource locations.  A figure of the observed data pairs 
and the predicted simple linear regression lines for both types of hypothetical locations is 
provided in Figure 3.     
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To evaluate source and nonsource differences, a beta-hat model was constructed to test the null 
hypothesis, Ho:  βS = βNS, the source (S) and nonsource (NS) slopes are equivalent.  Beta-hat 
models are used when the same form of model is used to describe data from more than one 
population, treatment, or treatment combinations.  Questions about the models are answered by 
testing hypotheses and constructing confidence intervals about functions of parameters or a 
single parameter from each model.  In this case a separate simple linear regression model was fit 
to the source and nonsource data pairs where for both models the intercept was constrained to 
zero (the assumption of a zero slope implies that when the standard deviation is zero the mean is 
zero).  A figure of the observed data pairs and the predicted lines for both types of hypothetical 
locations is provided in Figure 3.   
 
The results of the inferential test, Ho:  βS = βNS, provided a p-value of 0.2428 (F-value = 1.5411 
and mean square error = 0.0366) where the slope estimate for the source model is 1.9326 with a 
standard error of 0.2572 and a coefficient of simple determination (r2) of 0.9339; and the slope 
estimate for the nonsource model is 1.4999 with a standard error of 0.1709 and a coefficient of 
simple determination of 0.9277.  Based on the inferential test, the null hypothesis of equality was 
not rejected and it was concluded the relationship between the mean and standard deviation pairs 
for the two hypothetical locations are similar.  That is, regardless of location if the mean 
increases by 0.1 µg/m3 the standard deviation increases by approximately 0.2 µg/m3, twice as 
much.  Consequently, the data from the hypothetical source site was chosen to evaluate the 
design value averaging times since these location means are closer to the potential action level of 
0.2 µg/m3.   

 
Figure 3.  Hypothetical Source (filled circles) and Nonsource (unfilled circles)  

Location Means versus Standard Deviations (µg/m3).  
The predicted simple linear regression line for: source locations, dashed line;  

nonsource locations, dotted line; and both data sets combined solid line. 
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Model Construction 
Prior to model construction the hypothetical source data set was evaluated for trends using time 
series plots.  A plot of the year by month means for the hypothetical source location are 
displayed in Figure 4.  A trend line is included in the figure, based on a symmetric k-nearest 
neighbor linear least squares procedure (k/2 data points on each side of x are used in a linear 
regression to predict the value at x2).     
 
 

Figure 4.  Hypothetical Source Location Year by Month Means with a Trend Line (µg/m3).  
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Based on Figure 4 which displays an absence of a significant trend over the time period 2001 to 
2006, the decision was made to collapse the data by month to capture any seasonal trends.  
(Note, there is a slight decreasing trend when a simple linear regression model is fit to the data in 
Figure 4.  But the slope of -0.0008 is not statistically different at a significance level of 0.05.)   
Seasonal trends are displayed in Figure 5 where the monthly means are plotted for the data 
combined over the years 2001 to 2006.  A trend line (k/2 data points on each side of x are used in 
a linear regression to predict the value at x2) highlights the increase in mean concentration for 
the colder months.        
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Figure 5.  Hypothetical Source Location Month Means with a Trend Line (µg/m3).  
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A bootstrap method was employed to evaluate the uncertainty associated with various 
combinations of sampling frequency, completeness, measurement bias and precision, on the 
estimate of monthly and rolling quarterly design values.  The following bootstrap algorithm was 
constructed.     
 

1. Generate 2500 bootstrap samples for each month over a three year period where the 
sample size is a function of the number of days in the month.  Constructing monthly 
bootstrap samples allows for seasonal trends. 

2. Select a random sample from each of the 2500 x 36 bootstrap samples where the sample 
size is a function of one of the six combinations of sampling frequency (daily, 1 in 3, 1 in 
6) and completeness (90% and 75%). 

3. Adjust each observation in the 2500 x 36 random samples for a particular combination of 
precision and bias, as follows. 

a. For precision, assume a normal random variable with a mean of zero and standard 
deviation of the Pb concentration times a decrease in precision of either 10%, 
20%, or 30%. 

b. For bias, assume a fixed amount per measurement, add or subtract the Pb 
concentration times an increase in bias of either 5%, 10%, or 15%. 

4. Estimate the design value: 
a. For a monthly averaging time calculate the 2500 x 36 monthly averages, Mi,j,k, 
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where i = 1, 2, 3, years, j = 1, 2, ..., 12, months, and k = 1, 2, ..., 2500 bootstrap 
samples;  

b. For a rolling quarterly averaging time calculate the 2500 x 36 rolling quarterly 
averages as [Q1,1,1 = (M3,11,1 + M3,12,1 + M1,1,1) / 3]. 

5. Calculate the compliance rates for various action levels where the compliance rule is: 
a. For monthly averaging time – no more than one monthly average within a three 

year period greater than the action level (the design value is the second highest 
value within a three year period);  

b. For quarterly averaging time – no rolling quarterly average within a three year 
period greater than the action level (the design value is the highest value within a 
three year period). 

6. Calculate the average of the descriptive statistics (mean, standard error, 95% confidence 
interval) for each three year period for 2500 bootstrap iterations. 

   
The R-code used to generate the bootstrap samples is provided in Appendix D.  
 
To provide a reference distribution, the averaging time distributions for a daily sampling 
schedule, 100% completeness, no change in measurement bias and precision, were constructed 
for both monthly and rolling quarterly averaging times.  The descriptive statistics for these 
bootstrap distributions are provided in Table 3 for the monthly design value and Table 4 for the 
rolling quarterly design value.  Box plots of the two distributions are provided in Figure 6.  
 

 
Table 3.  Average Monthly Design Value Statistics for the Hypothetical Monitoring Site (µg/m3). 

(Daily Sampling, 100% Completeness, No Decrease in Precision or Increase in Bias) 
N Min. Q(.025) Q(.25) Med. Mean Q(.75) Q(.975) Max. SE 

2500 0.0563 0.0563 0.0890 0.1119 0.1221 0.1385  0.2329 0.2810 0.0487 
 
 

Table 4.  Average Rolling Quarterly Design Value Statistics for the Hypothetical Monitoring Site (µg/m3). 
(Daily Sampling, 100% Completeness, No Decrease in Precision or Increase in Bias) 

N Min. Q(.025) Q(.25) Med. Mean Q(.75) Q(.975) Max. SE 
2500 0.0776 0.0776 0.0997 0.1163 0.1221 0.1375 0.1843 0.1937 0.0297 
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Figure 6.  Box plots of Monthly and Quarterly Design Value Distributions (µg/m3). 

(Daily Sampling, 100% Completeness, No Decrease in Precision or Increase in Bias) 
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Data Analysis 
The data in Tables 9 to 20 were summarized using an analysis of variance.  The model used was 
a completely randomized design with a factorial treatment structure (averaging with two levels, 
sampling frequency with three levels, completeness with two levels, precision with three levels 
and bias with six levels) where the derived response variable was the width of the scenario 
confidence interval (95% confidence interval for the mean).  The analysis of variance table is 
provide in Table 6 for all statistically significant (p-value < 0.05) main and two-way interaction 
effects. 
 

Table 6.  Analysis of Variance Table for the Derived Response Variable the Ratio of the 
Width of the Scenario Confidence Interval to the Width of the Reference Confidence Interval 

Source of Variation DF Sum of 
Squares 

Mean 
Squares F-value Prob ≥ 

(F-value) 
Average 1 0.4673 0.4673 8885.953 0.00000 
Sampling 2 0.7677 0.3838 7297.906 0.00000 
Completeness 1 0.0155 0.0155 295.369 0.00000 
Precision 3 0.0014 0.0005 9.115 0.00001 
Bias 5 0.1242 0.0248 472.231 0.00000 
Average x Sampling 2 0.0083 0.0042 79.247 0.00000 
Average x Bias 6 0.0047 0.0008 15.019 0.00000 
Sampling x Completeness 2 0.0017 0.0009 16.398 0.00000 
Sampling x Bias 12 0.0087 0.0007 13.816 0.00000 
Experimental Error 193 0.0101 0.0001  
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The main effects are displayed in Figure 7 using box plots. 
 
All independent variables, design value averaging time, sampling frequency, completeness, 
precision and bias have a statistically significant impact on the width of the confidence interval 
for the mean (p-value < 0.0000).  The design value averaging time and sampling frequency have 
the greatest impact on the width (design value averaging time:  monthly = 0.2766, rolling 
quarterly = 0.1860; sampling frequency:  1:6 = 0.2980, 1:3 = 0.2392, daily = 0.1566 (µg/m3)) but 
the change in sampling frequency impacts the two design values differently.  The decrease in the 
mean width with the increase in sampling frequency is greater for the monthly average than the 
rolling quarterly average (Table 7). 

 
Table 7.  Design Value Averaging Time by Sampling Frequency Interaction Mean for the  

Width of the 95% Confidence Interval for the Mean (µg/m3). 
Design Value 1:6 Sampling 1:3 Sampling Daily Sampling 
Monthly 0.3496 0.2864 0.1937 
Rolling Quarterly 0.2465 0.1920 0.1194 

 
The change in design value averaging time also interacts with the change in bias. The decrease in 
the mean width with the decrease in bias is greater for the monthly averaging design value than 
the rolling quarterly average (Table 8). 
 

Table 8.  Design Value Averaging Time by Bias Interaction Means for the  
Width of the 95% Confidence Interval for the Mean (µg/m3).  

Design Value -15% 
Bias 

-10% 
Bias 

-5% 
Bias 

0% 
Bias 

+5% 
Bias 

+10% 
Bias 

+15% 
Bias 

Monthly 0.2361 0.2487 0.2683 0.2708 0.2892 0.3032 0.3158 
Rolling Quarterly 0.1596 0.1679 0.1768 0.1827 0.1953 0.2046 0.2129 
 
The change in data completeness has less impact on mean width than the change in design value 
averaging time, sampling frequency and bias (completeness:  75% = 0.2395, 90% = 0.2230 
(µg/m3)); and the change in precision has the least influence on mean width (10% = 0.2293, 20% 
= 0.2305, 30% = 0.2347 (µg/m3)).  
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Figure 7.  Box plots of the Main Effects for the  
Width of the 95% Confidence Interval for the Mean (µg/m3) 
(Mean = black filled circle, Median = white horizontal line). 
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Table 9.  Bootstrap Precision Estimates for Monthly Design Values over a Three Year Period  
Source Locations with Daily Sampling and 90% Completeness 

Monthly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance1 

For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1222 0.0513 0.0541 0.2391 0 22.60 91.92 
10% +5% 0.1282 0.0540 0.0568 0.2509 0 14.60 85.24 
10% +10% 0.1345 0.0567 0.0593 0.2632 0 9.24 76.16 
10% +15% 0.1404 0.0590 0.0622 0.2748 0 5.44 68.92 
20% +5% 0.1281 0.0546 0.0562 0.2512 0 14.88 83.16 
20% +10% 0.1344 0.0574 0.0586 0.2630 0 9.28 76.52 
20% +15% 0.1405 00597 0.0617 0.2751 0 5.36 68.52 
30% +5% 0.1282 0.0558 0.0553 0.2513 0 14.16 83.52 
30% +10% 0.1344 0.0585 0.0583 0.2641 0 8.68 76.52 

90% 

30% +15% 0.1405 0.0609 0.0606 0.2761 0 4.92 69.56 
10% -5% 0.1160 0.0488 0.0514 0.2266 0 31.48 85.44 
10% -10% 0.1100 0.0463 0.0486 0.2146 0 40.68 97.64 
10% -15% 0.1037 0.0438 0.0457 0.2023 0 49.32 99.28 
20% -5% 0.1160 0.0497 0.0508 0.2272 0 31.60 93.32 
20% -10% 0.1100 0.0474 0.0480 0.2152 0 41.36 96.36 
20% -15% 0.1038 0.0446 0.0452 0.2034 0 51.20 98.20 
30% -5% 0.1161 0.0512 0.0496 0.2299 0 31.60 90.28 
30% -10% 0.1099 0.0485 0.0466 0.2169 0 42.60 94.20 

Daily 

90% 

30% -15% 0.1038 0.0462 0.0440 0.2053 0 52.80 97.08 
1Compliance for monthly design value:  no more than one monthly average within a three year period greater than the action level 
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Table 10.  Bootstrap Precision Estimates for Monthly Design Values over a Three Year Period  
Source Locations with Daily Sampling and 75% Completeness 

Monthly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance1 

For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1223 0.0564 0.0499 0.2502 0 21.44 78.68 
10% +5% 0.1281 0.0591 0.0521 0.2602 0 15.32 74.16 
10% +10% 0.1343 0.0617 0.0550 0.2745 0 8.48 66.72 
10% +15% 0.1405 0.0647 0.0575 0.2861 0 4.24 61.32 
20% +5% 0.1283 0.0601 0.0516 0.2616 0 13.44 75.08 
20% +10% 0.1343 0.0630 0.0541 0.2744 0 7.04 68.84 
20% +15% 0.1404 0.0657 0.0569 0.2866 0 3.52 63.04 
30% +5% 0.1284 0.0615 0.0508 0.2633 0 12.88 75.68 
30% +10% 0.1345 0.0646 0.0533 0.2761 0 7.12 68.68 

75% 

30% +15% 0.1404 0.0667 0.0559 0.2885 0 3.56 63.56 
10% -5% 0.1160 0.0537 0.0472 0.2377 0 29.16 85.64 
10% -10% 0.1100 0.0510 0.0446 0.2251 0 37.24 91.68 
10% -15% 0.1039 0.0483 0.0422 0.2123 0 48.48 95.72 
20% -5% 0.1160 0.0548 0.0464 0.2380 0 28.56 84.84 
20% -10% 0.1099 0.0519 0.0441 0.2254 0 38.36 90.36 
20% -15% 0.1039 0.0492 0.0416 0.2133 0 46.52 94.32 
30% -5% 0.1160 0.0560 0.0454 0.2395 0 27.04 85.60 
30% -10% 0.1098 0.0543 0.0431 0.2273 0 36.48 89.24 

Daily 

75% 

30% -15% 0.1038 0.0509 0.0403 0.2151 0 47.36 92.36 
1Compliance for monthly design value:  no more than one monthly average within a three year period greater than the action level 
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Table 11.  Bootstrap Precision Estimates for Monthly Design Values over a Three Year Period  
Source Locations with 1 in 3 Sampling and 90% Completeness 

Monthly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance1 

For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1220 0.0854 0.0286 0.2974 0 6.24 70.36 
10% +5% 0.1287 0.0910 0.0300 0.3196 0 3.04 59.24 
10% +10% 0.1343 0.0947 0.0314 0.3284 0 1.60 54.12 
10% +15% 0.1407 0.0997 0.0324 0.3501 0 0.80 43.92 
20% +5% 0.1287 0.0917 0.0291 0.3175 0 3.52 58.88 
20% +10% 0.1340 0.0959 0.0306 0.3329 0 1.96 51.76 
20% +15% 0.1404 0.0998 0.0328 0.3458 0 0.56 44.64 
30% +5% 0.1279 0.0931 0.0287 0.3177 0 3.04 56.76 
30% +10% 0.1343 0.0973 0.0301 0.3332 0 1.80 48.08 

90% 

30% +15% 0.1411 0.1036 0.0315 0.3542 0 0.92 38.69 
10% -5% 0.1163 0.0823 0.0270 0.2869 0 9.72 72.76 
10% -10% 0.1098 0.0774 0.0257 0.2683 0 16.40 79.84 
10% -15% 0.1042 0.0744 0.0241 0.2592 0 24.40 81.72 
20% -5% 0.1166 0.0871 0.0268 0.2903 0 9.84 70.24 
20% -10% 0.1101 0.0804 0.0249 0.2741 0 15.64 76.12 
20% -15% 0.1038 0.0751 0.0235 0.2586 0 23.12 81.04 
30% -5% 0.1163 0.0865 0.0253 0.2920 0 9.12 68.92 
30% -10% 0.1098 0.0816 0.0240 0.2760 0 13.40 74.92 

1 in 3 

90% 

30% -15% 0.1093 0.0779 0.0222 0.2632 0 22.40 79.00 
1Compliance for monthly design value:  no more than one monthly average within a three year period greater than the action level 
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Table 12.  Bootstrap Precision Estimates for Monthly Design Values over a Three Year Period  
Source Locations with 1 in 3 Sampling and 75% Completeness 

Monthly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance1 

For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1221 0.0934 0.0245 0.3100 0 4.40 62.48 
10% +5% 0.1282 0.0988 0.0255 0.3293 0 2.64 54.68 
10% +10% 0.1345 0.1024 0.0270 0.3435 0 1.56 45.64 
10% +15% 0.1407 0.1075 0.0280 0.3602 0 0.48 36.72 
20% +5% 0.1281 0.0989 0.0252 0.3273 0 1.36 53.36 
20% +10% 0.1348 0.1050 0.0264 0.3477 0 1.52 43.40 
20% +15% 0.1406 0.1081 0.0276 0.3608 0 0.68 34.84 
30% +5% 0.1285 0.1015 0.0243 0.3341 0 2.72 48.24 
30% +10% 0.1347 0.1065 0.0254 0.3516 0 1.48 41.24 

75% 

30% +15% 0.1409 0.1111 0.0267 0.3684 0 0.36 31.48 
10% -5% 0.1162 0.0888 0.0228 0.2977 0 6.84 69.96 
10% -10% 0.1101 0.0842 0.0217 0.2809 0 13.32 74.72 
10% -15% 0.1041 0.0805 0.0206 0.2683 0 19.20 78.72 
20% -5% 0.1158 0.0894 0.0225 0.2977 0 7.44 67.08 
20% -10% 0.1102 0.0857 0.0214 0.2855 0 12.30 73.24 
20% -15% 0.1039 0.0811 0.0199 0.2651 0 18.88 79.04 
30% -5% 0.1161 0.0926 0.0215 0.3052 0 6.80 63.20 
30% -10% 0.1098 0.0875 0.0202 0.2864 0 11.32 70.44 

1 in 3 

75% 

30% -15% 0.1040 0.0838 0.0191 0.02743 0 15.92 75.32 
1Compliance for monthly design value:  no more than one monthly average within a three year period greater than the action level 
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Table 13.  Bootstrap Precision Estimates for Monthly Design Values over a Three Year Period  
Source Locations with 1 in 6 and 90% Completeness 

Monthly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance1 

For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1217 0.1121 0.0153 0.3430 0 3.28 39.88 
10% +5% 0.1285 0.1183 0.0163 0.3633 0 1.40 30.68 
10% +10% 0.1338 0.1226 0.0167 0.3772 0 0.80 25.84 
10% +15% 0.1407 0.1296 0.0173 0.4040 0 0.68 19.04 
20% +5% 0.1279 0.1188 0.0155 0.3696 0 1.56 31.48 
20% +10% 0.1344 0.1250 0.0165 0.3897 0 1.00 25.72 
20% +15% 0.1399 0.1293 0.0171 0.3990 0 0.64 21.04 
30% +5% 0.1283 0.1214 0.0153 0.3763 0 1.32 31.44 
30% +10% 0.1346 0.1271 0.0159 0.3938 0 0.80 25.52 

90% 

30% +15% 0.1398 0.1322 0.0167 0.4069 0 0.80 20.72 
10% -5% 0.1154 0.1062 0.0143 0.3257 0 4.48 47.88 
10% -10% 0.1093 0.1000 0.0137 0.3110 0 7.60 58.08 
10% -15% 0.1039 0.0960 0.0130 0.2967 0 11.56 63.60 
20% -5% 0.1162 0.1080 0.0142 0.3365 0 4.20 44.72 
20% -10% 0.1093 0.1022 0.0134 0.3134 0 8.16 56.64 
20% -15% 0.1040 0.0986 0.0123 0.3047 0 10.36 61.76 
30% -5% 0.1161 0.1109 0.0136 0.3440 0 5.40 44.48 
30% -10% 0.1098 0.1063 0.0129 0.3241 0 6.92 50.04 

1 in 6 

90% 

30% -15% 0.1039 0.0995 0.0117 0.3046 0 9.76 58.28 
1Compliance for monthly design value:  no more than one monthly average within a three year period greater than the action level 
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Table 14.  Bootstrap Precision Estimates for Monthly Design Values over a Three Year Period  
Source Locations with 1 in 6 and 75% Completeness 

Monthly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance1 

For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1224 0.1240 0.0117 0.3692 0 3.04 30.44 
10% +5% 0.1281 0.1290 0.0123 0.3869 0 1.40 27.32 
10% +10% 0.1345 0.1363 0.0128 0.4079 0 0.88 20.48 
10% +15% 0.1403 0.1422 0.0135 0.4233 0 0.44 17.60 
20% +5% 0.1285 0.1320 0.0119 0.3932 0 1.40 26.00 
20% +10% 0.1357 0.1408 0.0127 0.4176 0 1.00 31.32 
20% +15% 0.1398 0.1421 0.0133 0.4196 0 0.04 19.12 
30% +5% 0.1287 0.1353 0.0115 0.4015 0 1.24 26.12 
30% +10% 0.1347 0.1407 0.0122 0.4154 0 1.08 21.16 

75% 

30% +15% 0.1403 0.1449 0.0129 0.4296 0 0.48 19.92 
10% -5% 0.1160 0.1173 0.0111 0.3500 0 3.84 38.40 
10% -10% 0.1101 0.1120 0.0105 0.3328 0 6.12 45.80 
10% -15% 0.1037 0.1050 0.0098 0.3143 0 9.88 55.00 
20% -5% 0.1163 0.1194 0.0109 0.3559 0 4.00 39.04 
20% -10% 0.1096 0.1117 0.0103 0.3395 0 6.28 46.94 
20% -15% 0.1037 0.1074 0.0094 0.3189 0 9.76 52.84 
30% -5% 0.1156 0.1199 0.0103 0.3578 0 4.24 38.52 
30% -10% 0.1107 0.1173 0.0096 0.3427 0 6.08 43.48 

1 in 6 

75% 

30% -15% 0.1039 0.1106 0.0087 0.3230 0 8.86 51.60 
1Compliance for monthly design value:  no more than one monthly average within a three year period greater than the action level 
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Table 15.  Bootstrap Precision Estimates for Rolling Quarterly Design Values over a Three Year Period  
Source Locations with Daily Sampling and 90% Completeness. 

Quarterly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance2 
For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1222 0.0310 0.0761 0.1876 0 56.44 99.96 
10% +5% 0.1282 0.0326 0.0797 0.1976 0 40.68 99.72 
10% +10% 0.1345 0.0342 0.0836 0.2072 0 28.61 99.28 
10% +15% 0.1404 0.0357 0.0873 0.2164 0 17.96 98.00 
20% +5% 0.1281 0.0330 0.0794 0.1988 0 39.64 99.60 
20% +10% 0.1344 0.0347 0.0830 0.2087 0 28.52 98.72 
20% +15% 0.1405 0.0360 0.0870 0.2171 0 19.64 97.84 
30% +5% 0.1282 0.0335 0.0786 0.2003 0 37.84 98.96 
30% +10% 0.1344 0.0352 0.0824 0.2103 0 27.28 97.96 

90% 

30% +15% 0.1405 0.0367 0.0865 0.2196 0 19.00 96.04 
10% -5% 0.1160 0.0295 0.0723 0.1787 0 70.24 99.96 
10% -10% 0.1100 0.0280 0.0685 0.1693 0 82.36 100.00 
10% -15% 0.1037 0.0265 0.0644 0.1603 0 90.60 100.00 
20% -5% 0.1160 0.0300 0.0717 0.1801 0 67.44 100.00 
20% -10% 0.1100 0.0285 0.0680 0.1715 0 78.12 100.00 
20% -15% 0.1038 0.0269 0.0640 0.1613 0 88.40 100.00 
30% -5% 0.1161 0.0307 0.0708 0.1827 0 64.16 99.84 
30% -10% 0.1099 0.0290 0.0671 0.1727 0 75.40 99.96 

Daily 

90% 

30% -15% 0.1038 0.0277 0.0631 0.1636 0 84.12 100.00 
2Compliance for quarterly design values:  no rolling quarterly averages within a three year period greater than the action level 
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Table 16.  Bootstrap Precision Estimates for Rolling Quarterly Design Values over a Three Year Period  
Source Locations with Daily Sampling and 75% Completeness. 

Quarterly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance2 
For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1223 0.0336 0.0734 0.1951 0 43.64 99.48 
10% +5% 0.1281 0.0352 0.0766 0.2050 0 31.84 98.72 
10% +10% 0.1343 0.0367 0.0807 0.2141 0 23.84 97.16 
10% +15% 0.1405 0.0386 0.0841 0.2243 0 16.68 94.40 
20% +5% 0.1283 0.0358 0.0761 0.2067 0 31.40 97.76 
20% +10% 0.1343 0.0375 0.0797 0.2162 0 23.48 96.20 
20% +15% 0.1404 0.0391 0.0836 0.2258 0 16.52 94.20 
30% +5% 0.1284 0.0365 0.0756 0.2087 0 31.40 96.96 
30% +10% 0.1345 0.0384 0.0790 0.2195 0 23.44 94.40 

75% 

30% +15% 0.1404 0.0395 0.0828 0.2274 0 17.56 91.60 
10% -5% 0.1160 0.0321 0.0693 0.1860 0 55.80 99.68 
10% -10% 0.1100 0.0303 0.0658 0.1762 0 70.16 99.96 
10% -15% 0.1039 0.0288 0.0620 0.1669 0 81.84 10.00 
20% -5% 0.1160 0.0326 0.0686 0.1876 0 54.08 99.36 
20% -10% 0.1099 0.0309 0.0650 0.1775 0 67.72 99.72 
20% -15% 0.1039 0.0292 0.0613 0.1679 0 78.60 100.00 
30% -5% 0.1160 0.0332 0.0680 0.1893 0 51.20 99.12 
30% -10% 0.1098 0.0317 0.0639 0.1800 0 63.16 99.72 

Daily 

75% 

30% -15% 0.1038 0.0301 0.0604 0.1707 0 74.24 99.88 
2Compliance for quarterly design values:  no rolling quarterly averages within a three year period greater than the action level 
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Table 17.  Bootstrap Precision Estimates for Rolling Quarterly Design Values over a Three Year Period  
Source Locations with 1 in 3 Sampling and 90% Completeness. 

Quarterly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance2 
For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1220 0.0488 0.0568 0.2367 0 30.92 70.20 
10% +5% 0.1287 0.0521 0.0595 0.2514 0 22.36 64.48 
10% +10% 0.1343 0.0541 0.0619 0.2611 0 17.72 60.36 
10% +15% 0.1407 0.0571 0.0643 0.2746 0 11.28 55.32 
20% +5% 0.1281 0.0525 0.0587 0.2526 0 21.00 65.92 
20% +10% 0.1340 0.0549 0.0611 0.2635 0 15.88 62.44 
20% +15% 0.1404 0.0571 0.0643 0.2742 0 11.76 58.44 
30% +5% 0.1279 0.0532 0.0576 0.2539 0 22.00 67.20 
30% +10% 0.1343 0.0555 0.0604 0.2646 0 16.76 62.52 

90% 

30% +15% 0.1411 0.0591 0.0631 0.2806 0 10.52 57.20 
10% -5% 0.1163 0.0470 0.0533 0.2263 0 36.68 77.48 
10% -10% 0.1098 0.0444 0.0507 0.2142 0 42.72 83.52 
10% -15% 0.1042 0.0425 0.0479 0.2040 0 47.72 55.96 
20% -5% 0.1166 0.0481 0.0530 0.2306 0 3412 75.40 
20% -10% 0.1101 0.0459 0.0498 0.2192 0.04 40.60 80.00 
20% -15% 0.1038 0.0429 0.0469 0.2044 0 48.40 85.96 
30% -5% 0.1163 0.0493 0.0543 0.2333 0 32.28 74.24 
30% -10% 0.1098 0.0465 0.0486 0.2199 0 42.28 78.72 

1 in 3 

90% 

30% -15% 0.1039 0.0443 0.0460 0.2089 0 49.20 83.12 
2Compliance for quarterly design values:  no rolling quarterly averages within a three year period greater than the action level 
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Table 18.  Bootstrap Precision Estimates for Rolling Quarterly Design Values over a Three Year Period  
Source Locations with 1 in 3 Sampling and 75% Completeness. 

Quarterly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance2 
For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1221 0.0532 0.0528 0.2492 0 27.68 65.00 
10% +5% 0.1282 0.0562 0.0549 0.2622 0 20.92 61.60 
10% +10% 0.1345 0.0584 0.0581 0.2731 0 13.92 59.44 
10% +15% 0.1407 0.0613 0.0603 0.2850 0 10.44 56.44 
20% +5% 0.1281 0.0565 0.0545 0.2630 0 20.24 63.80 
20% +10% 0.1348 0.0595 0.0574 0.2763 0 14.24 60.08 
20% +15% 0.1406 0.0615 0.0601 0.2862 0 11.16 56.24 
30% +5% 0.1285 0.0578 0.0536 0.2663 0 18.52 64.40 
30% +10% 0.1347 0.0605 0.0566 0.2785 0 12.92 60.72 

75% 

30% +15% 0.1409 0.0633 0.0589 0.2920 0 9.92 55.12 
10% -5% 0.1162 0.0507 0.0496 0.2362 0 34.36 69.92 
10% -10% 0.1101 0.0479 0.0475 0.2240 0 40.44 75.84 
10% -15% 0.1041 0.0459 0.0447 0.2134 0 46.80 79.68 
20% -5% 0.1158 0.0509 0.0492 0.2368 0 32.88 70.76 
20% -10% 0.1102 0.0487 0.0468 0.2260 0 40.76 75.48 
20% -15% 0.1039 0.0460 0.0440 0.2137 0 46.72 80.12 
30% -5% 0.1161 0.0525 0.0481 0.2410 0 30.96 71.72 
30% -10% 0.1098 0.0500 0.0452 0.2289 0 39.52 74.92 

1 in 3 

75% 

30% -15% 0.1040 0.0476 0.0427 0.2176 0 45.64 79.32 
2Compliance for quarterly design values:  no rolling quarterly averages within a three year period greater than the action level 
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Table 19.  Bootstrap Precision Estimates for Rolling Quarterly Design Values over a Three Year Period  
Source Locations with 1 in 6 Sampling and 90% Completeness. 

Quarterly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance2 
For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1217 0.0632 0.0430 0.2747 0 20.76 64.56 
10% +5% 0.1285 0.0670 0.0448 0.2904 0 13.40 60.88 
10% +10% 0.1338 0.0693 0.0473 0.3017 0 10.12 59.24 
10% +15% 0.1407 0.0734 0.0496 0.3187 0 6.76 53.16 
20% +5% 0.1279 0.0669 0.0444 0.2893 0 13.80 61.92 
20% +10% 0.1344 0.0705 0.0470 0.3043 0 10.64 57.84 
20% +15% 0.1399 0.0731 0.0488 0.3163 0 6.76 53.36 
30% +5% 0.1283 0.0686 0.0435 0.2942 0 13.60 60.60 
30% +10% 0.1346 0.0718 0.0461 0.3077 0 9.68 56.04 

90% 

30% +15% 0.1398 0.0744 0.0477 0.3197 0 8.36 51.92 
10% -5% 0.1154 0.0602 0.0407 0.2623 0 26.84 67.20 
10% -10% 0.1093 0.0563 0.0386 0.2400 0 34.40 71.48 
10% -15% 0.1039 0.0542 0.0366 0.2347 0.16 41.08 71.20 
20% -5% 0.1162 0.0611 0.0405 0.2632 0 23.56 67.76 
20% -10% 0.1093 0.0575 0.0379 0.2482 0.04 32.28 71.44 
20% -15% 0.1040 0.0556 0.0358 0.2383 0.04 39.08 72.44 
30% -5% 0.1161 0.0625 0.0392 0.2665 0 24.72 67.40 
30% -10% 0.1098 0.0599 0.0367 0.2556 0 29.29 70.52 

1 in 6 

90% 

30% -15% 0.1039 0.0562 0.0347 0.2393 0.04 35.24 74.80 
2Compliance for quarterly design values:  no rolling quarterly averages within a three year period greater than the action level 
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Table 20.  Bootstrap Precision Estimates for Rolling Quarterly Design Values over a Three Year Period  
Source Locations with 1 in 6 Sampling and 75% Completeness. 

Quarterly Measurement Design Value Statistics for a  
Three Year Period 

Percent in Compliance2 
For Action Levels 

Sampling Completeness Precision Bias Average 
Mean  

Average 
Standard

Error  

Average 
2.5% 

Quantile 

Average 
97.5% 

Quantile 

0.1 
µg/m3 

0.2 
µg/m3 

0.3 
µg/m3 

0 0 0.1224 0.0700 0.0383 0.2933 0 15.64 63.24 
10% +5% 0.1281 0.0726 0.0403 0.3044 0 11.40 59.12 
10% +10% 0.1345 0.0770 0.0420 0.3231 0 8.48 55.36 
10% +15% 0.1403 0.0804 0.0435 0.3367 0 5.40 49.84 
20% +5% 0.1285 0.0748 0.0395 0.3121 0 10.92 57.48 
20% +10% 0.1357 0.0793 0.0416 0.3306 0 8.40 50.88 
20% +15% 0.1398 0.0803 0.0433 0.3362 0 5.96 48.80 
30% +5% 0.1287 0.0759 0.0383 0.3147 0 11.12 56.16 
30% +10% 0.1347 0.0793 0.0408 0.3302 0 8.04 50.64 

75% 

30% +15% 0.1403 0.0815 0.0425 0.3396 0 6.68 46.52 
10% -5% 0.1160 0.0662 0.0361 0.2770 0.04 21.48 68.04 
10% -10% 0.1101 0.0632 0.0345 0.2643 0 28.52 69.88 
10% -15% 0.1037 0.0593 0.0326 0.2487 0.04 35.88 72.76 
20% -5% 0.1163 0.0674 0.0353 0.2804 0 20.20 67.00 
20% -10% 0.1096 0.0629 0.0335 0.2619 0 28.32 70.64 
20% -15% 0.1037 0.0604 0.0315 0.2516 0 33.32 72.60 
30% -5% 0.1156 0.0673 0.0347 0.2794 0 20.92 66.16 
30% -10% 0.1107 0.0660 0.0328 0.2731 0 24.56 68.36 

1 in 6 

75% 

30% -15% 0.1039 0.0623 0.0303 0.2573 0 33.00 72.48 
2Compliance for quarterly design values:  no rolling quarterly averages within a three year period greater than the action level 
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Appendix A: Construct of the data set. 
 
How qualified measurements or outlying values were handled: 

• Location 06025-0005 - qualified observations were retained since they lie within the 
main body of the data. 

• Location 06073-1007 - the qualified observations follow the same trend as the non-
qualified; even though 77 of the 150 observations are qualified, the qualified observations 
were retained.   

• Location 09009-2123 – the location was removed since 50% of the observations are 
qualified and there are less than 40 measurements for the location. 

• Location 26163-0019 - the qualified observation was retained since the qualifier is a 
“Validated Value.”   

• Location 29093-0016 - the four qualified observations appear to follow the same trend as 
the non-qualified observations and since the qualifier is a “Validated Value” the qualified 
observations were retained. 

• Location 29093-0021 - the two qualified observations appear to follow the same trend as 
the non-qualified observations and since the qualifier is a “Validated Value” the qualified 
observations were retained. 

• Location 29093-0024 - the fourteen qualified observations appear to follow the same 
trend as the non-qualified observations and since the qualifier is a “Validated Value” the 
qualified observations were retained. 

• Location 29099-0005 - all but one of the qualified observations appear to follow the same 
trend as the non-qualified, these qualified observations have the qualifier of “Validated 
Value” and were retained.  The one observation outside the main body of the data was 
taken in 2001 and has the highest concentration in the entire data set (39.8 
micrograms/cubic meter, the next highest is 15.9 micrograms/cubic meter).  This 
observation was removed.   

• Location 29099-0013 - the three qualified observations appear to follow the same trend 
as the non-qualified observations and since the qualifier is a “Validated Value” the 
qualified observations were retained. 

• Location 4811-3057 - the 54 highest concentrations for 2001 are all from location 4811-
3057, these observations are outside the main body of the data and were removed.   

 
Locations with less than 40 measurements for at least one calendar year. 
The following locations were deleted from the final data set:  

• 08001-0001 measurements in only four months 
• 09009-2123 only 24 measurements in a calendar year 
• 11001-0027 measurement in only eight months 
• 13089-0003  
• 08031-0024 measurements in only five months  
• 29099-0021 measurements in only three months 

 
Measurement without a duration code of “7” (code for 24 hour measurement).   
The following quarterly and monthly measurements were deleted:    

• 86 monthly observations from 01109-0003 from the years 2001 to 2005;  
• eight quarterly observations from 47093-0027 from the years 2001 and 2002; and 
• 12 observations from 2616-3001 from the year 2001.  
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Special Studies  
All four locations with the project label of Special Studies, 29093-0016, 29093-0021, 29099-
0004, and 29099-0013, were removed. 
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Appendix B:  Descriptive statistics for the AQS source and nonsource locations.  
 
Table B-1.  Descriptive Statistics for Source Locations sorted by Standard Deviation. 

ID1 N Min Q(25) Median Mean Q(75) Max Std. 
Dev. %CV # of 

0s %0s 

450452002 443 0.00000 0.00000 0.00000 0.00067 0.00000 0.02200 0.00291 437 418 94.36
160790006 88 0.03000 0.03000 0.03000 0.03091 0.03000 0.06000 0.00419 14 0 0.00 
450190003 441 0.00000 0.00000 0.00000 0.00161 0.00000 0.04100 0.00453 281 381 86.39
270370421 193 0.00000 0.00000 0.00000 0.00430 0.01000 0.02000 0.00556 129 116 60.10
270530968 143 0.00000 0.00000 0.00000 0.00252 0.00000 0.04000 0.00563 223 113 79.02
421010047 55 0.00000 0.01000 0.01000 0.01436 0.02000 0.04000 0.00877 61 6 10.91
170313103 358 0.01000 0.01000 0.01000 0.01394 0.01000 0.11000 0.00937 67 0 0.00 
270530967 187 0.00000 0.00000 0.00000 0.00695 0.01000 0.11000 0.01149 165 94 50.27
180970076 350 0.00100 0.00700 0.01200 0.01535 0.02000 0.09200 0.01254 82 0 0.00 
421010449 324 0.00000 0.01200 0.02200 0.02416 0.03025 0.08100 0.01512 63 10 3.09 
170316003 335 0.00000 0.02000 0.03000 0.03027 0.04000 0.10000 0.01566 52 1 0.30 
170310022 350 0.00000 0.02000 0.02000 0.02617 0.03000 0.12000 0.01659 63 4 1.14 
470930027 165 0.00000 0.01000 0.01000 0.01352 0.01000 0.14000 0.01749 129 8 4.85 
481410033 229 0.01000 0.01000 0.03000 0.03192 0.05000 0.09000 0.02210 69 0 0.00 
471570044 200 0.00000 0.01000 0.01000 0.01540 0.01000 0.24000 0.02241 146 3 1.50 
291892003 359 0.00000 0.00000 0.00000 0.01916 0.05000 0.13000 0.02493 130 223 62.12
471570045 43 0.01000 0.01000 0.02000 0.03070 0.03000 0.17000 0.03165 103 0 0.00 
180890023 354 0.00000 0.01100 0.02250 0.03325 0.04100 0.24000 0.03411 103 3 0.85 
170310026 350 0.00000 0.02000 0.03000 0.04194 0.05000 0.29000 0.03512 84 1 0.29 
180970063 683 0.00000 0.00800 0.01700 0.03008 0.03900 0.23600 0.03525 117 7 1.02 
490351001 283 0.01700 0.01800 0.01900 0.03741 0.03150 0.22900 0.04185 112 0 0.00 
481130018 344 0.00000 0.00500 0.00500 0.02217 0.03000 0.92000 0.05615 253 68 19.77
420110005 285 0.03000 0.03000 0.04000 0.06533 0.06000 0.58000 0.07336 112 0 0.00 
270370020 217 0.00000 0.00000 0.00000 0.01074 0.01000 1.09000 0.07420 691 120 55.30
471633002 354 0.01000 0.02000 0.04000 0.05579 0.06000 1.19000 0.07851 141 0 0.00 
360713001 316 0.00300 0.03000 0.03000 0.05511 0.05000 0.78000 0.08599 156 0 0.00 
420250105 283 0.03000 0.04000 0.04000 0.08495 0.09000 1.30000 0.12105 142 0 0.00 
270370001 222 0.00000 0.02000 0.03000 0.07919 0.09000 0.87000 0.12798 162 5 2.25 
360713002 308 0.00200 0.03000 0.05000 0.09719 0.10175 1.03000 0.13050 134 0 0.00 
340231003 256 0.00700 0.00800 0.01200 0.06627 0.04400 0.93500 0.13950 211 0 0.00 
420110717 338 0.00000 0.04000 0.09000 0.14047 0.18750 1.26000 0.15300 109 1 0.30 
480850007 344 0.003002 0.00900 0.03350 0.10273 0.13300 2.04000 0.17693 172 0 0.00 
471870104 209 0.00000 0.01000 0.07000 0.14411 0.20000 1.25000 0.19983 139 14 6.70 
171190010 346 0.01000 0.01000 0.03000 0.06347 0.06000 3.73000 0.22227 350 0 0.00 
080010005 420 0.00000 0.01583 0.05000 0.11359 0.12880 5.15920 0.28996 255 6 1.43 
290930030 411 0.00000 0.00000 0.09300 0.18238 0.22000 4.98000 0.34828 191 157 38.20
011090003 54 0.02400 0.07925 0.12600 0.34056 0.45750 1.39000 0.38605 113 0 0.00 
471870100 233 0.00000 0.04000 0.14000 0.37000 0.41000 8.58000 0.76024 205 10 4.29 
290930024 404 0.00000 0.08000 0.44550 0.66525 0.86250 6.72000 0.88295 133 64 15.84
120571066 353 0.00000 0.10000 0.30000 0.62295 0.70000 5.60000 0.92887 149 39 11.05
290990005 661 0.00000 0.03400 0.16000 0.49005 0.51000 8.62000 0.96313 197 137 20.73

1The first two numbers of the ID identify the state, the next three identify the county, and the last four identify the site. 
2Bolded indicate locations used to construct the hypothetical location. 
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Table B-2.  Descriptive Statistics for Nonsource Locations sorted by Standard Deviation. 
ID N Min Q(25) Median Mean Q(75) Max Std. 

Dev. %CV # of 
0s %0s 

245100041 138 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 NA 138 100.00
170314201 119 0.01000 0.01000 0.01000 0.01050 0.01000 0.04000 0.00341 32 0 0.00 
271377555 371 0.00000 0.00000 0.00000 0.00186 0.00000 0.02000 0.00416 224 306 82.48 
270370423 227 0.00000 0.00000 0.00000 0.00198 0.00000 0.03000 0.00471 237 188 82.82 
080310025 163 0.00070 0.00555 0.00770 0.00886 0.01135 0.03380 0.00499 56 0 0.00 
340071007 52 0.00700 0.00700 0.00700 0.01063 0.01900 0.01900 0.00539 51 0 0.00 
060375005 147 0.00000 0.00000 0.00000 0.00395 0.01000 0.02000 0.00556 141 94 63.95 
270531007 265 0.00000 0.00000 0.00000 0.00321 0.01000 0.04000 0.00570 178 190 71.70 
270370442 193 0.00000 0.00000 0.00000 0.00352 0.01000 0.03000 0.00578 164 133 68.91 
270530966 239 0.00000 0.00000 0.00000 0.00485 0.01000 0.03000 0.00579 119 131 54.81 
721270003 294 0.00000 0.00000 0.00000 0.00286 0.00000 0.05000 0.00588 206 221 75.17 
450790006 177 0.00000 0.00000 0.00000 0.00346 0.00900 0.03800 0.00599 173 125 70.62 
270530050 263 0.00000 0.00000 0.01000 0.00567 0.01000 0.03000 0.00601 106 127 48.29 
270530963 262 0.00000 0.00000 0.00000 0.00397 0.01000 0.04000 0.00609 153 169 64.50 
450450008 627 0.00000 0.00000 0.00000 0.00224 0.00000 0.08100 0.00615 274 519 82.78 
121033005 365 0.00000 0.00000 0.00000 0.00055 0.00000 0.10000 0.00739 1349 363 99.45 
261630019 225 0.00236 0.00597 0.00917 0.01072 0.01280 0.07667 0.00743 69 0 0.00 
120310032 93 0.00000 0.00000 0.00400 0.00630 0.01000 0.05400 0.00865 137 43 46.24 
450430009 456 0.00000 0.00000 0.00000 0.00430 0.00825 0.06800 0.00883 205 330 72.37 
060731007 150 0.00070 0.00650 0.00985 0.01230 0.01500 0.05900 0.00889 72 0 0.00 
170310001 347 0.00000 0.01000 0.01000 0.01415 0.02000 0.07000 0.00928 66 11 3.17 
060651003 362 0.00000 0.01000 0.01000 0.01235 0.01000 0.06000 0.00931 75 54 14.92 
360470122 174 0.00500 0.02000 0.02450 0.02466 0.03000 0.06000 0.00963 39 0 0.00 
171170002 352 0.01000 0.01000 0.01000 0.01142 0.01000 0.17000 0.00968 85 0 0.00 
260490021 351 0.00000 0.00500 0.00754 0.00948 0.01100 0.11610 0.00984 104 16 4.56 
171430037 347 0.01000 0.01000 0.01000 0.01294 0.01000 0.09000 0.00997 77 0 0.00 
110010039 80 0.00320 0.00700 0.01300 0.01346 0.02000 0.07600 0.01010 75 0 0.00 
360850067 159 0.00000 0.00000 0.01000 0.01113 0.02000 0.05000 0.01043 94 51 32.08 
250250002 224 0.00500 0.00500 0.01300 0.01416 0.01800 0.08800 0.01127 80 0 0.00 
120310084 98 0.00000 0.00000 0.00700 0.00837 0.01200 0.09600 0.01140 136 34 34.69 
270530964 109 0.00000 0.00000 0.00000 0.00404 0.01000 0.09000 0.01148 284 80 73.39 
271231003 272 0.00000 0.00000 0.01000 0.00695 0.01000 0.13000 0.01171 169 126 46.32 
482011034 352 0.00100 0.00600 0.00700 0.00766 0.00800 0.21000 0.01229 160 0 0.00 
060658001 353 0.00000 0.01000 0.01000 0.01448 0.02000 0.07000 0.01242 86 60 17.00 
270530965 256 0.00000 0.00000 0.00000 0.00484 0.01000 0.17000 0.01252 259 163 63.67 
060371602 76 0.00000 0.01000 0.01000 0.01395 0.02000 0.09000 0.01337 96 15 19.74 
270530053 122 0.00000 0.00000 0.01000 0.01033 0.01000 0.09000 0.01366 132 38 31.15 
170310052 348 0.00000 0.01000 0.02000 0.02057 0.03000 0.12000 0.01409 68 8 2.30 
421010004 49 0.00000 0.00000 0.02000 0.01653 0.03000 0.05000 0.01422 86 15 30.61 
481410010 61 0.01000 0.01000 0.03000 0.03148 0.04000 0.06000 0.01611 51 0 0.00 
060250005 351 0.00200 0.00695 0.01400 0.01734 0.02150 0.14200 0.01626 94 0 0.00 
360713004 309 0.00000 0.03000 0.03000 0.02700 0.03000 0.27000 0.01764 65 1 0.32 
420210808 358 0.03000 0.03000 0.04000 0.03737 0.04000 0.30000 0.01804 48 0 0.00 
060711004 349 0.00000 0.01000 0.01000 0.01734 0.02000 0.29000 0.01914 110 35 10.03 
060371601 253 0.00000 0.01000 0.02000 0.02609 0.03000 0.18000 0.02074 80 7 2.77 
180892008 338 0.00000 0.00800 0.01300 0.01919 0.02400 0.23400 0.02221 116 9 2.66 
481410002 109 0.01000 0.04000 0.06000 0.05945 0.07000 0.12000 0.02235 38 0 0.00 
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420030002 322 0.00000 0.00000 0.00000 0.00886 0.00000 0.11500 0.02256 255 278 86.34 
060374002 378 0.00000 0.01000 0.01000 0.01638 0.02000 0.36000 0.02274 139 47 12.43 
080650001 308 0.00000 0.00950 0.01190 0.01691 0.02000 0.30000 0.02311 137 20 6.49 
271377001 279 0.00000 0.00000 0.00000 0.00315 0.00000 0.41000 0.02488 789 238 85.30 
080410011 349 0.00000 0.00440 0.00900 0.01073 0.00980 0.31410 0.02872 268 40 11.46 
060719004 347 0.00000 0.01000 0.01000 0.02026 0.02000 0.35000 0.02927 144 36 10.37 
060371103 374 0.00000 0.01000 0.02000 0.02578 0.03000 0.52000 0.03158 123 17 4.55 
170313301 345 0.00000 0.01000 0.02000 0.02522 0.03000 0.44000 0.03728 148 1 0.29 
171193007 358 0.01000 0.01000 0.01000 0.02257 0.02000 0.43000 0.04049 179 0 0.00 
060375001 195 0.00000 0.01000 0.01000 0.01928 0.02000 0.60000 0.04558 236 32 16.41 
171630010 356 0.01000 0.01000 0.02000 0.04253 0.05000 0.35000 0.04846 114 0 0.00 
060371301 350 0.00000 0.01000 0.02000 0.02443 0.03000 0.96000 0.05300 217 20 5.71 
261630001 345 0.00109 0.00595 0.00781 0.01183 0.01095 1.01900 0.05457 461 0 0.00 
080310002 341 0.00000 0.00930 0.01240 0.02532 0.02000 0.53500 0.05618 222 19 5.57 
481130057 1659 0.00000 0.00500 0.00500 0.03235 0.04000 1.34000 0.06306 195 333 20.07 
420070505 312 0.03000 0.03000 0.04000 0.07356 0.07000 0.67000 0.08801 120 0 0.00 
220950003 112 0.00000 0.01100 0.02300 0.05649 0.05300 1.32700 0.13770 244 10 8.93 
300490726 56 0.00000 0.03000 0.08000 0.14661 0.23250 0.53000 0.14512 99 1 1.79 
420110003 59 0.03000 0.04000 0.08000 0.17407 0.24000 0.96000 0.20581 118 0 0.00 

1The first two numbers of the ID identify the state, the next three identify the county, and the last four identify the site. 
2Bolded indicate locations used to construct the hypothetical location. 
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Appendix C:  Descriptive statistics, time series plots and distribution plots for the hypothetical 
source and nonsource locations. 
 
Figure C-1.  Time series plots of the hypothetical source and nonsource locations. 
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Figure C-2.  Distribution plots and descriptive statistics for the hypothetical source location. 
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Figure C-2.  Distribution plots and descriptive statistics for the hypothetical nonsource location. 
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Acronyms, description of statistics and how to interpret the figures in Appendix C. 
 
Descriptive Statistics 
 
N     sample size 
Min.   minimum value of a set of observations 
Q(.25)   25th quantile; divides the data set such that one fourth of the observations fall 

below Q(.25) and three fourths lie above 
Median 50th quantile; divides the data set such that one half of the observations fall below 

Q(.50) and one half lie above  
Q(.75)  75th quantile; divides the data set such that three fourths of the  observations fall 

below Q(.75) and one fourth lie above 
Max.   maximum value of a set of observations 
Mean  the arithmetic average of all the values in a set of observations; the mean is the 

most commonly used measure of central tendency.   
SD   the standard deviation describe the dispersion relative to the center of a set of 

observations; the variance is the average of the squared deviation of each 
observation from the mean; the standard deviation is the square root of the 
variance 

CS  coefficient of skewness; the third moment about the mean is a measure of 
asymmetry; symmetrical distributions will have a skewness of 0, distributions that 
are skewed to the left will have a skewness < 0, and distributions that are skewed 
to the right will have a skewness > 0 

CK  coefficient of kurtosis; the fourth moment about the mean is a measure of 
curvature or kurtosis, which is the degree of flatness of a density near its center; 
values close to 3(n  1)/(n + 1) indicate normality 

CV  coefficient of variation; the mean divided by the standard deviation 
 
 
D’Agostino & Pearson Test for Normality 
 
K2   the test statistic for an omnibus test of normality based on the coefficients of 

skewness and kurtosis; the null hypothesis is that the data are normally distributed 
p(Z(K2)) the probability of observing a value of Z(CS) or one greater  
Z(CS)   the test statistic for an inferential test for detecting nonnormality due to skewness; 

the null hypothesis is the CS = 0 
p(Z(CS)) the probability of observing a value of Z(CS) or one greater  
Z(CK)   the test statistic for an inferential test for detecting nonnormality due to kurtosis; 

the null hypothesis is the CK = 3 
p(Z(CK)) the probability of observing a value of Z(CK) or one greater  
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Figures 
 
(A)  A histogram partitions the range of the data into several nonoverlapping intervals of 

equal length, called bins, and counts the number observations in each bin.  The number of 
counts in each bin can be displayed on a density scale, where the y-axis represents the 
probability; or a nondensity or frequency scale, where the y-axis represents the bin 
counts.  The histogram is completely determined by two parameters, the bin width and 
the bin origin. 

 
The histogram of a set of observations that are normally distributed will appear unimodal 
and symmetric. 

 
(B)  A normal quantile-quantile plot (Q-Q plot)  is  obtained by plotting the quantiles of the 

observed data against the corresponding quantiles of the normal distribution.  If the 
quantiles of the empirical distribution and the quantiles of the normal distribution, fall on 
a straight line then the distributions are similar.   

 
(C)  A box plot is a rectangle, the top and bottom of the rectangle represent the upper and 

lower quartiles of the data, the horizontal line within the rectangle represents the median.  
Lines, in the shape of a “T”, extend from the box to the nearest value not beyond a 
standard span from the quartiles.  These lines are often referred to as whiskers.  Values 
beyond the end of the whiskers are drawn individually. 

 
The standard span is 1.5·Inter-Quartile Range (IQR) , where the upper quartile is the 75th 
quantile, Q(.75), the lower quartile is the 25th quantile, Q(.25) and the IQR = Q(.75)  
Q(.25). 

 
The box plot of a set of observations that are normally distributed will be symmetric with 
the median in the center of the box. 
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Appendix D:  Bootstrap R Code 
 

#Bootstrap Samples for Source Locations 
#Construct the bootstrap samples for each month assuming daily sampling and 100% 
#completeness.   These bootstrap samples are used to construct the various combinations 
#sampling frequency, completeness, precision and bias 
 
SF <- read.csv(file="TSPSourceFinal.csv") 
 
Conc <- SF$Conc 
Month <- SF$Month 
 
R <- 2500 #number of bootstrap samples for each month 
sample.size <- c(31,29,31,30,31,30,31,31,30,31,30,31) 
  
#Construct the 2500 bootstrap samples for each month for the first year  
SJan.boot1 <- matrix(rep(0, R*sample.size[1]), nrow=R) 
for (i in 1:R) 
{ 
 SJan.boot1[i,]<- sample(Conc[Month==1], sample.size[1], replace = FALSE) 
} 
 
SFeb.boot1 <- matrix(rep(0, R*sample.size[2]), nrow=R) 
for (i in 1:R) 
{ 
 SFeb.boot1[i,]<- sample(Conc[Month==2], sample.size[2], replace = FALSE) 
} 
 
SMar.boot1 <- matrix(rep(0, R*sample.size[3]), nrow=R) 
for (i in 1:R) 
{ 
 SMar.boot1[i,]<- sample(Conc[Month==3], sample.size[3], replace = FALSE) 
} 
 
SApr.boot1 <- matrix(rep(0, R*sample.size[4]), nrow=R) 
for (i in 1:R) 
{ 
 SApr.boot1[i,]<- sample(Conc[Month==4], sample.size[4], replace = FALSE) 
} 
 
SMay.boot1 <- matrix(rep(0, R*sample.size[5]), nrow=R) 
for (i in 1:R) 
{ 
 SMay.boot1[i,]<- sample(Conc[Month==5], sample.size[5], replace = FALSE) 
} 
 
SJun.boot1 <- matrix(rep(0, R*sample.size[6]), nrow=R) 
for (i in 1:R) 
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{ 
 SJun.boot1[i,]<- sample(Conc[Month==6], sample.size[6], replace = FALSE) 
} 
 
SJul.boot1<- matrix(rep(0, R*sample.size[7]), nrow=R) 
for (i in 1:R) 
{ 
 SJul.boot1[i,]<- sample(Conc[Month==7], sample.size[7], replace = FALSE) 
} 
 
SAug.boot1 <- matrix(rep(0, R*sample.size[8]), nrow=R) 
for (i in 1:R) 
{ 
 SAug.boot1[i,]<- sample(Conc[Month==8], sample.size[8], replace = FALSE) 
} 
 
SSep.boot1 <- matrix(rep(0, R*sample.size[9]), nrow=R) 
for (i in 1:R) 
{ 
 SSep.boot1[i,]<- sample(Conc[Month==9], sample.size[9], replace = FALSE) 
} 
 
SOct.boot1 <- matrix(rep(0, R*sample.size[10]), nrow=R) 
for (i in 1:R) 
{ 
 SOct.boot1[i,]<- sample(Conc[Month==10], sample.size[10], replace = FALSE) 
} 
 
SNov.boot1 <- matrix(rep(0, R*sample.size[11]), nrow=R) 
for (i in 1:R) 
{ 
 SNov.boot1[i,]<- sample(Conc[Month==11], sample.size[11], replace = FALSE) 
} 
 
SDec.boot1 <- matrix(rep(0, R*sample.size[12]), nrow=R) 
for (i in 1:R) 
{ 
 SDec.boot1[i,]<- sample(Conc[Month==12], sample.size[12], replace = FALSE) 
} 
 
#Construct the 2500 bootstrap samples for each month for the second year  
SJan.boot2 <- matrix(rep(0, R*sample.size[1]), nrow=R) 
for (i in 1:R) 
{ 
 SJan.boot2[i,]<- sample(Conc[Month==1], sample.size[1], replace = FALSE) 
} 
 
SFeb.boot2 <- matrix(rep(0, R*sample.size[2]), nrow=R) 
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for (i in 1:R) 
{ 
 SFeb.boot2[i,]<- sample(Conc[Month==2], sample.size[2], replace = FALSE) 
} 
 
SMar.boot2 <- matrix(rep(0, R*sample.size[3]), nrow=R) 
for (i in 1:R) 
{ 
 SMar.boot2[i,]<- sample(Conc[Month==3], sample.size[3], replace = FALSE) 
} 
 
SApr.boot2 <- matrix(rep(0, R*sample.size[4]), nrow=R) 
for (i in 1:R) 
{ 
 SApr.boot2[i,]<- sample(Conc[Month==4], sample.size[4], replace = FALSE) 
} 
 
SMay.boot2 <- matrix(rep(0, R*sample.size[5]), nrow=R) 
for (i in 1:R) 
{ 
 SMay.boot2[i,]<- sample(Conc[Month==5], sample.size[5], replace = FALSE) 
} 
 
SJun.boot2 <- matrix(rep(0, R*sample.size[6]), nrow=R) 
for (i in 1:R) 
{ 
 SJun.boot2[i,]<- sample(Conc[Month==6], sample.size[6], replace = FALSE) 
} 
 
SJul.boot2 <- matrix(rep(0, R*sample.size[7]), nrow=R) 
for (i in 1:R) 
{ 
 SJul.boot2[i,]<- sample(Conc[Month==7], sample.size[7], replace = FALSE) 
} 
 
SAug.boot2 <- matrix(rep(0, R*sample.size[8]), nrow=R) 
for (i in 1:R) 
{ 
 SAug.boot2[i,]<- sample(Conc[Month==8], sample.size[8], replace = FALSE) 
} 
 
SSep.boot2 <- matrix(rep(0, R*sample.size[9]), nrow=R) 
for (i in 1:R) 
{ 
 SSep.boot2[i,]<- sample(Conc[Month==9], sample.size[9], replace = FALSE) 
} 
 
SOct.boot2 <- matrix(rep(0, R*sample.size[10]), nrow=R) 
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for (i in 1:R) 
{ 
 SOct.boot2[i,]<- sample(Conc[Month==10], sample.size[10], replace = FALSE) 
} 
 
SNov.boot2 <- matrix(rep(0, R*sample.size[11]), nrow=R) 
for (i in 1:R) 
{ 
 SNov.boot2[i,]<- sample(Conc[Month==11], sample.size[11], replace = FALSE) 
} 
 
SDec.boot2 <- matrix(rep(0, R*sample.size[12]), nrow=R) 
for (i in 1:R) 
{ 
 SDec.boot2[i,]<- sample(Conc[Month==12], sample.size[12], replace = FALSE) 
} 
 
#Construct the 2500 bootstrap samples for each month for the third year  
SJan.boot3 <- matrix(rep(0, R*sample.size[1]), nrow=R) 
for (i in 1:R) 
{ 
 SJan.boot3[i,]<- sample(Conc[Month==1], sample.size[1], replace = FALSE) 
} 
 
SFeb.boot3 <- matrix(rep(0, R*sample.size[2]), nrow=R) 
for (i in 1:R) 
{ 
 SFeb.boot3[i,]<- sample(Conc[Month==2], sample.size[2], replace = FALSE) 
} 
 
SMar.boot3 <- matrix(rep(0, R*sample.size[3]), nrow=R) 
for (i in 1:R) 
{ 
 SMar.boot3[i,]<- sample(Conc[Month==3], sample.size[3], replace = FALSE) 
} 
 
SApr.boot3 <- matrix(rep(0, R*sample.size[4]), nrow=R) 
for (i in 1:R) 
{ 
 SApr.boot3[i,]<- sample(Conc[Month==4], sample.size[4], replace = FALSE) 
} 
 
SMay.boot3 <- matrix(rep(0, R*sample.size[5]), nrow=R) 
for (i in 1:R) 
{ 
 SMay.boot3[i,]<- sample(Conc[Month==5], sample.size[5], replace = FALSE) 
} 
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SJun.boot3 <- matrix(rep(0, R*sample.size[6]), nrow=R) 
for (i in 1:R) 
{ 
 SJun.boot3[i,]<- sample(Conc[Month==6], sample.size[6], replace = FALSE) 
} 
 
SJul.boot3 <- matrix(rep(0, R*sample.size[7]), nrow=R) 
for (i in 1:R) 
{ 
 SJul.boot3[i,]<- sample(Conc[Month==7], sample.size[7], replace = FALSE) 
} 
 
SAug.boot3 <- matrix(rep(0, R*sample.size[8]), nrow=R) 
for (i in 1:R) 
{ 
 SAug.boot3[i,]<- sample(Conc[Month==8], sample.size[8], replace = FALSE) 
} 
 
SSep.boot3 <- matrix(rep(0, R*sample.size[9]), nrow=R) 
for (i in 1:R) 
{ 
 SSep.boot3[i,]<- sample(Conc[Month==9], sample.size[9], replace = FALSE) 
} 
 
SOct.boot3 <- matrix(rep(0, R*sample.size[10]), nrow=R) 
for (i in 1:R) 
{ 
 SOct.boot3[i,]<- sample(Conc[Month==10], sample.size[10], replace = FALSE) 
} 
 
SNov.boot3 <- matrix(rep(0, R*sample.size[11]), nrow=R) 
for (i in 1:R) 
{ 
 SNov.boot3[i,]<- sample(Conc[Month==11], sample.size[11], replace = FALSE) 
} 
 
SDec.boot3 <- matrix(rep(0, R*sample.size[12]), nrow=R) 
for (i in 1:R) 
{ 
 SDec.boot3[i,]<- sample(Conc[Month==12], sample.size[12], replace = FALSE) 
} 
 
 
#Precision Measures for Source Locations – Monthly & Quarterly 
 
Bias.Choices <- c(0, 0.05, 0.10, 0.15, -0.05, -0.10, -0.15) 
Precision.Choices <- c(0, 0.1, 0.2, 0.3) 
Completeness.Choices <- c(1, 0.9, 0.75) 
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SamplingPlan.Choices <- c( 1, 0.333, 0.167) 
 
Bias <- Bias.Choices[7] 
Precision <- Precision.Choices[4] 
Completeness <- Completeness.Choices[3] 
Sampling.Plan <- SamplingPlan.Choices[2] 
  
#Monthly Means for 3 Year 3 
M1.1<-matrix(rep(0, R), ncol=1); M2.1<-matrix(rep(0, R), ncol=1)  
M3.1<-matrix(rep(0, R), ncol=1); M4.1<-matrix(rep(0, R), ncol=1) 
M5.1<-matrix(rep(0, R), ncol=1); M6.1<-matrix(rep(0, R), ncol=1)  
M7.1<-matrix(rep(0, R), ncol=1); M8.1<-matrix(rep(0, R), ncol=1) 
M9.1<-matrix(rep(0, R), ncol=1); M10.1<-matrix(rep(0, R), ncol=1)  
M11.1<-matrix(rep(0, R), ncol=1); M12.1<-matrix(rep(0, R), ncol=1)  
 
M1.2<-matrix(rep(0, R), ncol=1); M2.2<-matrix(rep(0, R), ncol=1)  
M3.2<-matrix(rep(0, R), ncol=1); M4.2<-matrix(rep(0, R), ncol=1) 
M5.2<-matrix(rep(0, R), ncol=1); M6.2<-matrix(rep(0, R), ncol=1)  
M7.2<-matrix(rep(0, R), ncol=1); M8.2<-matrix(rep(0, R), ncol=1) 
M9.2<-matrix(rep(0, R), ncol=1); M10.2<-matrix(rep(0, R), ncol=1)  
M11.2<-matrix(rep(0, R), ncol=1); M12.2<-matrix(rep(0, R), ncol=1)  
 
M1.3<-matrix(rep(0, R), ncol=1); M2.3<-matrix(rep(0, R), ncol=1)  
M3.3<-matrix(rep(0, R), ncol=1); M4.3<-matrix(rep(0, R), ncol=1) 
M5.3<-matrix(rep(0, R), ncol=1); M6.3<-matrix(rep(0, R), ncol=1)  
M7.3<-matrix(rep(0, R), ncol=1); M8.3<-matrix(rep(0, R), ncol=1) 
M9.3<-matrix(rep(0, R), ncol=1); M10.3<-matrix(rep(0, R), ncol=1)  
M11.3<-matrix(rep(0, R), ncol=1); M12.3<-matrix(rep(0, R), ncol=1)  
 
for(i in 1:R) 
{ 
#January 
S1.1<-sample(SJan.boot1[i,], round((sample.size[1]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S1.2<-sample(SJan.boot2[i,], round((sample.size[1]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S1.3<-sample(SJan.boot3[i,], round((sample.size[1]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
M1.1[i] <- mean(S1.1 + rnorm(length(S1.1), 0, S1.1*Precision) + S1.1*Bias) 
M1.2[i] <- mean(S1.2 + rnorm(length(S1.2), 0, S1.2*Precision) + S1.2*Bias) 
M1.3[i] <- mean(S1.3 + rnorm(length(S1.3), 0, S1.3*Precision) + S1.3*Bias) 
 
#February 
S2.1<-sample(SFeb.boot1[i,], round((sample.size[2]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S2.2<-sample(SFeb.boot2[i,], round((sample.size[2]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S2.3<-sample(SFeb.boot3[i,], round((sample.size[2]*Completeness*Sampling.Plan), 0), 
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  replace = FALSE) 
M2.1[i] <- mean(S2.1 + rnorm(length(S2.1), 0, S2.1*Precision) + S2.1*Bias) 
M2.2[i] <- mean(S2.2 + rnorm(length(S2.2), 0, S2.2*Precision) + S2.2*Bias) 
M2.3[i] <- mean(S2.3 + rnorm(length(S2.3), 0, S2.3*Precision) + S2.3*Bias) 
 
#March 
S3.1<-sample(SMar.boot1[i,], round((sample.size[3]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S3.2<-sample(SMar.boot2[i,], round((sample.size[3]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S3.3<-sample(SMar.boot3[i,], round((sample.size[3]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
M3.1[i] <- mean(S3.1 + rnorm(length(S3.1), 0, S3.1*Precision) + S3.1*Bias) 
M3.2[i] <- mean(S3.2 + rnorm(length(S3.2), 0, S3.2*Precision) + S3.2*Bias) 
M3.3[i] <- mean(S3.3 + rnorm(length(S3.3), 0, S3.3*Precision) + S3.3*Bias) 
 
#April 
S4.1<-sample(SApr.boot1[i,], round((sample.size[4]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S4.2<-sample(SApr.boot2[i,], round((sample.size[4]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S4.3<-sample(SApr.boot3[i,], round((sample.size[4]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
M4.1[i] <- mean(S4.1 + rnorm(length(S4.1), 0, S4.1*Precision) + S4.1*Bias) 
M4.2[i] <- mean(S4.2 + rnorm(length(S4.2), 0, S4.2*Precision) + S4.2*Bias) 
M4.3[i] <- mean(S4.3 + rnorm(length(S4.3), 0, S4.3*Precision) + S4.3*Bias) 
 
#May 
S5.1<-sample(SMay.boot1[i,], round((sample.size[5]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S5.2<-sample(SMay.boot2[i,], round((sample.size[5]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S5.3<-sample(SMay.boot3[i,], round((sample.size[5]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
M5.1[i] <- mean(S5.1 + rnorm(length(S5.1), 0, S5.1*Precision) + S5.1*Bias) 
M5.2[i] <- mean(S5.2 + rnorm(length(S5.2), 0, S5.2*Precision) + S5.2*Bias)  
M5.3[i] <- mean(S5.3 + rnorm(length(S5.3), 0, S5.3*Precision) + S5.3*Bias) 
 
#April 
S6.1<-sample(SJun.boot1[i,], round((sample.size[6]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S6.2<-sample(SJun.boot2[i,], round((sample.size[6]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S6.3<-sample(SJun.boot3[i,], round((sample.size[6]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
M6.1[i] <- mean(S6.1 + rnorm(length(S6.1), 0, S6.1*Precision) + S6.1*Bias) 
M6.2[i] <- mean(S6.2 + rnorm(length(S6.2), 0, S6.2*Precision) + S6.2*Bias) 
M6.3[i] <- mean(S6.3 + rnorm(length(S6.3), 0, S6.3*Precision) + S6.3*Bias) 
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#July 
S7.1<-sample(SJul.boot1[i,], round((sample.size[7]*Completeness*Sampling.Plan), 0), 

 replace = FALSE) 
S7.2<-sample(SJul.boot2[i,], round((sample.size[7]*Completeness*Sampling.Plan), 0), 

 replace = FALSE) 
S7.3<-sample(SJul.boot3[i,], round((sample.size[7]*Completeness*Sampling.Plan), 0), 

 replace = FALSE) 
M7.1[i] <- mean(S7.1 + rnorm(length(S7.1), 0, S7.1*Precision) + S7.1*Bias) 
M7.2[i] <- mean(S7.2 + rnorm(length(S7.2), 0, S7.2*Precision) + S7.2*Bias) 
M7.3[i] <- mean(S7.3 + rnorm(length(S7.3), 0, S7.3*Precision) + S7.3*Bias) 
 
#August 
S8.1<-sample(SAug.boot1[i,], round((sample.size[8]*Completeness*Sampling.Plan), 0), 

 replace = FALSE) 
S8.2<-sample(SAug.boot2[i,], round((sample.size[8]*Completeness*Sampling.Plan), 0), 

 replace = FALSE) 
S8.3<-sample(SAug.boot3[i,], round((sample.size[8]*Completeness*Sampling.Plan), 0), 

 replace = FALSE) 
M8.1[i] <- mean(S8.1 + rnorm(length(S8.1), 0, S8.1*Precision) + S8.1*Bias) 
M8.2[i] <- mean(S8.2 + rnorm(length(S8.2), 0, S8.2*Precision) + S8.2*Bias) 
M8.3[i] <- mean(S8.3 + rnorm(length(S8.3), 0, S8.3*Precision) + S8.3*Bias) 
 
#September 
S9.1<-sample(SSep.boot1[i,], round((sample.size[9]*Completeness*Sampling.Plan), 0), 

replace = FALSE) 
S9.2<-sample(SSep.boot2[i,], round((sample.size[9]*Completeness*Sampling.Plan), 0), 

replace = FALSE) 
S9.3<-sample(SSep.boot3[i,], round((sample.size[9]*Completeness*Sampling.Plan), 0), 

replace = FALSE) 
M9.1[i] <- mean(S9.1 + rnorm(length(S9.1), 0, S9.1*Precision) + S9.1*Bias) 
M9.2[i] <- mean(S9.2 + rnorm(length(S9.2), 0, S9.2*Precision) + S9.2*Bias) 
M9.3[i] <- mean(S9.3 + rnorm(length(S9.3), 0, S9.3*Precision) + S9.3*Bias) 
 
#October 
S10.1<-sample(SOct.boot1[i,], round((sample.size[10]*Completeness*Sampling.Plan), 0), 

replace = FALSE) 
S10.2<-sample(SOct.boot2[i,], round((sample.size[10]*Completeness*Sampling.Plan), 0), 

replace = FALSE) 
S10.3<-sample(SOct.boot3[i,], round((sample.size[10]*Completeness*Sampling.Plan), 0), 

replace = FALSE) 
M10.1[i] <- mean(S10.1 + rnorm(length(S10.1), 0, S10.1*Precision) + S10.1*Bias) 
M10.2[i] <- mean(S10.2 + rnorm(length(S10.2), 0, S10.2*Precision) + S10.2*Bias) 
M10.3[i] <- mean(S10.3 + rnorm(length(S10.3), 0, S10.3*Precision) + S10.3*Bias) 
 
#November 
S11.1<-sample(SNov.boot1[i,], round((sample.size[11]*Completeness*Sampling.Plan), 0),  

replace = FALSE) 
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S11.2<-sample(SNov.boot2[i,], round((sample.size[11]*Completeness*Sampling.Plan), 0),  
replace = FALSE) 

S11.3<-sample(SNov.boot3[i,], round((sample.size[11]*Completeness*Sampling.Plan), 0),  
replace = FALSE) 

M11.1[i] <- mean(S11.1 + rnorm(length(S11.1), 0, S11.1*Precision) + S11.1*Bias) 
M11.2[i] <- mean(S11.2 + rnorm(length(S11.2), 0, S11.2*Precision) + S11.2*Bias)  
M11.3[i] <- mean(S11.3 + rnorm(length(S11.3), 0, S11.3*Precision) + S11.3*Bias) 
 
#December 
S12.1<-sample(SDec.boot1[i,], round((sample.size[12]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S12.2<-sample(SDec.boot2[i,], round((sample.size[12]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
S12.3<-sample(SDec.boot3[i,], round((sample.size[12]*Completeness*Sampling.Plan), 0), 
  replace = FALSE) 
M12.1[i] <- mean(S12.1 + rnorm(length(S12.1), 0, S12.1*Precision) + S12.1*Bias) 
M12.2[i] <- mean(S12.2 + rnorm(length(S12.2), 0, S12.2*Precision) + S12.2*Bias) 
M12.3[i] <- mean(S12.3 + rnorm(length(S12.3), 0, S12.3*Precision) + S12.3*Bias) 
} 
 
dataQ <- cbind( 

apply(cbind(M11.1, M12.1, M1.1), 1, mean), 
apply(cbind(M12.1, M1.1, M2.1), 1, mean), 
apply(cbind(M1.1, M2.1, M3.1), 1, mean), 
apply(cbind(M2.1, M3.1, M4.1), 1, mean), 
apply(cbind(M3.1, M4.1, M5.1), 1, mean), 
apply(cbind(M4.1, M5.1, M6.1), 1, mean), 
apply(cbind(M5.1, M6.1, M7.1), 1, mean), 
apply(cbind(M6.1, M7.1, M8.1), 1, mean), 
apply(cbind(M7.1, M8.1, M9.1), 1, mean), 
apply(cbind(M8.1, M9.1, M10.1), 1, mean), 
apply(cbind(M9.1, M10.1, M11.1), 1, mean), 
apply(cbind(M10.1, M11.1, M12.1), 1, mean),  
apply(cbind(M11.2, M12.2, M1.2), 1, mean), 
apply(cbind(M12.2, M1.2, M2.2), 1, mean), 
apply(cbind(M1.2, M2.2, M3.2), 1, mean), 
apply(cbind(M2.2, M3.2, M4.2), 1, mean), 
apply(cbind(M3.2, M4.2, M5.2), 1, mean), 
apply(cbind(M4.2, M5.2, M6.2), 1, mean), 
apply(cbind(M5.2, M6.2, M7.2), 1, mean), 
apply(cbind(M6.2, M7.2, M8.2), 1, mean), 
apply(cbind(M7.2, M8.2, M9.2), 1, mean), 
apply(cbind(M8.2, M9.2, M10.2), 1, mean), 
apply(cbind(M9.2, M10.2, M11.2), 1, mean), 
apply(cbind(M10.2, M11.2, M12.2), 1, mean),  
apply(cbind(M11.3, M12.3, M1.3), 1, mean), 
apply(cbind(M12.3, M1.3, M2.3), 1, mean), 
apply(cbind(M1.3, M2.3, M3.3), 1, mean), 
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apply(cbind(M2.3, M3.3, M4.3), 1, mean), 
apply(cbind(M3.3, M4.3, M5.3), 1, mean), 
apply(cbind(M4.3, M5.3, M6.3), 1, mean), 
apply(cbind(M5.3, M6.3, M7.3), 1, mean), 
apply(cbind(M6.3, M7.3, M8.3), 1, mean), 
apply(cbind(M7.3, M8.3, M9.3), 1, mean), 
apply(cbind(M8.3, M9.3, M10.3), 1, mean), 
apply(cbind(M9.3, M10.3, M11.3), 1, mean), 
apply(cbind(M10.3, M11.3, M12.3), 1, mean) ) 

 
DVQ1<-rep(0,R); DVQ2<-rep(0,R); DVQ3<-rep(0,R) 

 
for (i in 1:R) 
{  

DVQ1[i]<- length(dataQ[i,][dataQ[i,]>0.10]) 
DVQ2[i]<- length(dataQ[i,][dataQ[i,]>0.20]) 
DVQ3[i]<- length(dataQ[i,][dataQ[i,]>0.30]) 

} 
 
dataM <- cbind(M1.1,M2.1,M3.1,M4.1,M5.1,M6.1,M7.1,M8.1,M9.1,M10.1,M11.1,M12.1, 
      M1.2,M2.2,M3.2,M4.2,M5.2,M6.2,M7.2,M8.2,M9.2,M10.2,M11.2,M12.2, 

     M1.3,M2.3,M3.3,M4.3,M5.3,M6.3,M7.3,M8.3,M9.3,M10.3,M11.3,M12.3) 
 
DVM1<-rep(0,R); DVM2<-rep(0,R); DVM3<-rep(0,R) 

 
for (i in 1:R) 
{  

DVM1[i]<- length(dataM[i,][dataM[i,]>0.10]) 
DVM2[i]<- length(dataM[i,][dataM[i,]>0.20]) 
DVM3[i]<- length(dataM[i,][dataM[i,]>0.30]) 

} 
 
 
#Transform the non-source design values so the DV with daily sampling, 100% #completeness, 
0% bias, and a precision of one 

#var.adj <- 0.0257/sqrt(var(DVNS)) 
#mn.adj <- 0.2000 - mean(DVNS*var.adj) 
#DVT <- DV*var.adj + mn.adj 
 
upper95<-function(x) {sort(x)[round(0.975*36, 0)]} 
lower95<-function(x) {sort(x)[round(0.025*36, 0)]} 

 
#win.graph(height=11, width=8.5) 
#par(mfrow=c(2,1)) 
DQ <- sample(dataQ, 2500)  
#Check the distribution against a lognormal 
par(pty = “s”) 
pel <- fitdistr(DQ, "lognormal") 
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rl <- rlnorm(2500,  pel[1]$estimate[[1]], pel[1]$estimate[[2]]) 
qqplot(DQ, qlnorm(ppoints(rl),  

meanlog = pel[1]$estimate[[1]],  
sdlog = pel[1]$estimate[[2]]), xlab = “Quarterly Empirical”, ylab = “”) 

abline(0, 1, col = 2, lty = 2) 
 
par(pty = “s”) 
DM <- sample(dataM, 2500) 
pel <- fitdistr(DM, "lognormal") 
rl <- rlnorm(2500,  pel[1]$estimate[[1]], pel[1]$estimate[[2]]) 
qqplot(DM, qlnorm(ppoints(rl),  

meanlog = pel[1]$estimate[[1]],  
sdlog = pel[1]$estimate[[2]]), xlab = “Monthly Empirical”, ylab = “”) 

abline(0, 1, col = 2, lty = 2) 
 
#Precision estimates for Monthly   

round(mean(apply(dataM, 1, mean)), 4)  
round(mean(sqrt(apply(dataM, 1, var))), 4) 
round(mean(apply(dataM, 1, lower95)), 4) 
round(mean(apply(dataM, 1, upper95)), 4) 

 round((length(DVM1[DVM1 < 2])/2500)*100, 2) 
round((length(DVM2[DVM2 < 2])/2500)*100, 2) 
round((length(DVM3[DVM3 < 2])/2500)*100, 2) 

   
#Precision estimates for Quarterly   

round(mean(apply(dataQ, 1, mean)), 4) 
round(mean(sqrt(apply(dataQ, 1, var))) , 4) 
round(mean(apply(dataQ, 1, lower95)), 4) 
round(mean(apply(dataQ, 1, upper95)), 4) 

 round((length(DVQ1[DVQ1==0])/2500)*100, 2) 
round((length(DVQ2[DVQ2==0])/2500)*100, 2) 
round((length(DVQ3[DVQ3==0])/2500)*100, 2) 

 
 
 
 

 
 
 
 
 




